			Version 11.0
JOHNS HOPKINS HEALTH PLANS	1	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	33	04/01/2024
			01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	1 of 28

This document applies to the following Participating Organizations:

EHP

US Family Health Plan

Keywords: Carrier, Genetic, Preimplantation, Prenatal

Table	e of Contents	Page Number
I.	ACTION	1
II.	POLICY DISCLAIMER	1
III.	POLICY	1
IV.	POLICY CRITERIA	2
V.	DEFINITIONS	6
VI.	BACKGROUND	8
VII.	CODING DISCLAIMER	10
VIII.	CODING INFORMATION	10
IX.	REFERENCE STATEMENT	22
X.	REFERENCES	22
XI.	APPROVALS	28

I. ACTION

	New Policy	
Х	Revising Policy Number	CMS07.03
	Superseding Policy Number	
	Retiring Policy Number	

II. POLICY DISCLAIMER

Johns Hopkins Health Plans (JHHP) provides a full spectrum of health care products and services for Advantage MD, Employer Health Programs, Johns Hopkins Health Plan of Virginia Inc., Priority Partners, and US Family Health Plan. Each line of business possesses its own unique contract, benefits, regulations, and regulators' clinical guidelines that supersede the information outlined in this policy.

III. POLICY

Cross Reference:

<u>CMS04.03 Pharmacogenomics</u>

For Advantage MD, refer to: eviCore Guidelines

For Employer Health Programs (EHP) refer to:

• Plan specific Summary Plan Descriptions (SPDs)

For Johns Hopkins Health Plan of Virginia Inc. (JHHPVA) refer to: eviCore Guidelines

	1	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
JOHNS HOPKINS		Approval Date	01/16/2024
HEALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	2 of 28

For Priority Partners (PPMCO) refer to: eviCore Guidelines

For US Family Health Plan refer to: Tricare Policy Manuals

- TRICARE Policy Manual 6010.63-M, April 1, 2021, Chapter 6, Section 3.1 Genetic Testing and Counseling
- TRICARE Policy Manual 6010.63-M, April 1, 2021, Chapter 4, Section 18.1 Maternity Care
- TRICARE Policy Manual 6010.63-M, April 1, 2021, Chapter 4, Section 18.2 Antepartum Services
- TRICARE Operations Manual 6010.62-M, April 1, 2021, Chapter 18, Section 2 Defense Health Agency (DHA) Evaluation Of Non-United States (U.S.) Food and Drug Administration (FDA) Approved Laboratory Developed Tests (LDTs) Demonstration Project

IV. POLICY CRITERIA

- A. When benefits are provided under the member's contract, JHHP considers genetic and genomic testing to be medically necessary when the <u>Universal Requirements in section B</u> AND the <u>Specific Genetic Test Category Criteria in section C</u> (if *available*) are met:
- B. <u>Universal Requirements</u>:
 - 1. All genetic tests must be ordered by a treating specialist physician (e.g., neurologist, cardiologist, OB/GYN, clinical geneticist), a nurse practitioner or physician assistant working with a specialist physician, or genetic counselor practicing within the scope of their license, who will ensure that the medical necessity criteria below are met (*For USFHP*, genetic counselors are not ordering providers), AND;
 - 2. The requested genetic test is as targeted as possible for the clinical situation and is performed for ONE of the following reasons:
 - a. For the diagnosis of genetic disease in a symptomatic individual (diagnostic), OR;
 - b. For the determination of future risk of suspected disease (presymptomatic/predictive), OR;
 - c. For the detection of risks of specific diseases to future children (carrier status, prenatal, pre-implantation), AND;
 - 3. Supporting documentation submitted for utilization review must include the following:
 - a. Test specific information:
 - i. Proprietary test name(s)/gene names(s), and applicable CPT codes, AND;
 - ii. Name of laboratory performing the test and name of billing provider (if institutional/facility billing, indicate name of the performing laboratory), AND;
 - b. Clinical documentation submitted to support medical necessity reflects the following:
 - i. Clinical rationale for genetic testing, AND;
 - ii. Result of the test will directly impact the management of the member (e.g., treatment, screening, or surveillance), or member's current pregnancy, AND;
 - iii. The member or parent/guardian received genetic counseling regarding possible outcomes (positive or negative results) and a suggested plan of action by a healthcare professional with expertise in genetics, AND;
 - c. Documentation indicating the requested test has adequate clinical validity and utility based on ONE of the following:
 - Genetic testing for requested indication is supported by well-recognized professional societies or government organizations (e.g., <u>American College of Obstetrician and Gynecologists (ACOG)</u>, <u>American</u> <u>College of Medical Genetics and Genomics (ACMG)</u>, <u>National Comprehensive Cancer Network (NCCN)</u>, <u>American Heart Association (AHA)</u>, <u>Heart Rhythm Society (HRS)</u>, <u>National Institutes of Health OR</u>;
 - Genetic testing is supported by credible scientific evidence-based peer-reviewed medical literature generally recognized by the relevant medical community.
 <u>Note:</u> Examples of publicly available resources hosted by the National Institute of Health (NIH) include:

HNS HOPKINS	Johns Hopkins Health Plans Medical Policy Manual Medical Policy	Policy Number Effective Date	Version 11.0 CMS07.03 04/01/2024
		Approval Date	01/16/2024
		Supersedes Date	11/01/2023
	Genetic Testing	Page	3 of 28

• <u>GeneReviews</u>[®]: an international point-of-care resource that provides clinically relevant and medically actionable information for inherited conditions (clinical characteristics, diagnosis, testing, and management)

.

- <u>Clinical Genome Resource (ClinGen)</u>: a central resource that defines the clinical relevance of genes and variants (search for gene-disease validity and actionability [clinical intervention]; search by gene[s] or disease)
- <u>OMIM[®]</u>: a comprehensive compendium of human genes and genetic phenotypes containing full-text information on all known Mendelian disorders (resource is updated daily)
- <u>PDQ® Cancer Information Summaries, Genetics:</u> Genetics by National Cancer Institute (cancer risk assessment, genes associated with hereditary cancers), OR;
- iii. Genetic tests that have received a Hayes rating of A or B for specific indication(s) requested by the ordering provider, AND;
- 4. The member has not had the requested genetic test done previously (genetic testing is indicated once per lifetime per condition). Exceptions may be considered if:
 - a. Technical advances in testing demonstrate significant advantages that would support a medical need to retest, OR;
 - b. New pathologic familial variant is identified in an immediate blood relative and the member has not yet been tested, OR;
 - c. There is a relapse of cancer or failure of cancer treatment and a new sample of primary tumor will be examined.
- 5. Unless specific benefits are provided under the member's contract, JHHP considers the following genetic tests experimental and investigational for all indications as they do not meet the Technology Evaluation Criteria (TEC) as defined in <u>CMS01.00 Medical Policy Introduction</u>: (*not all-inclusive*)
 - a. Genetic tests that have received a Hayes Rating of D1 or D2, OR;
 - b. Genetic testing for polymorphisms (e.g., C677T and A1298C) in the MTHFR gene, OR;
 - c. Genetic testing for single nucleotide polymorphisms (SNPs), OR;
 - d. Polygenic risk score testing, OR;
 - e. Direct-to-consumer genetic tests (e.g., 23andMe PGS Genetic Health Risk Report, 23andMe Personal Genome Service (PGS), 23andMe MUTYH-Associated Polyposis (MAP), AncestryDNA Factor V Leiden Genetic Health Risk Test).
- C. <u>Specific Genetic Test Category Criteria</u>:

IOF

- 1. Diagnostic testing in a symptomatic individual:
 - a. Clinical presentation is consistent with a certain or highly probable genetic etiology, OR;
 - b. Newborn screening results are positive, borderline, or inconclusive for a specific disorder for which confirmatory genetic testing is required.
- 2. *Predictive testing in an asymptomatic individual:*
 - a. Individual is at increased risk of developing cancer or multifactorial genetic disorder (e.g., cardiomyopathy, pulmonary hypertension) due to family history, AND;
 - b. Presence of genetic variant(s) is highly predictive for the development of the genetic condition, AND;
 - c. The results will be used for clinical management or recommendations for surveillance, AND;
 - d. Development of symptoms is certain in the presence of a gene mutation (e.g., Huntington's disease, spinocerebellar ataxia, APC gene), OR;
 - e. Development of symptoms is likely but not certain in the presence of a gene mutation (e.g., predisposition to breast cancer [BRCA gene] or colon cancer [e.g., MSH2 or MSH6 gene]).
- 3. *Carrier status testing:* Preconception or prenatal carrier testing for an individual who has the capacity and intention to reproduce is considered medically necessary when the following criteria are met:

			Version 11.0
INS HOPKINS	Medical Policy Manual Medical Policy	Policy Number	CMS07.03
		Effective Date	04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	4 of 28

- a. Routine screening when mandated by governmental organizations and/or recommended by well-recognized professional societies in the United States (e.g., routine screening for cystic fibrosis and spinal muscular atrophy as recommended by the American College of Obstetricians and Gynecologists (ACOG), OR;
- b. Carrier screening based on family history of a genetic condition:
 - i. Genetic testing is for disease-causing (pathogenic or likely pathogenic) variant(s) with a well-defined phenotype that would have a detrimental effect on health and/or quality of life (e.g., cause cognitive or physical impairment, require surgical or medical intervention), AND;
 - ii. The member is at risk of being a carrier of a genetic condition due to family history (e.g., Fragile-X Syndrome), ethnicity (e.g., Ashkenazi Jewish, African descent), or abnormal laboratory findings (e.g., hemoglobinopathies), OR;
 - iii. The member's reproductive partner is affected or a known carrier of a genetic condition, OR;
 - iv. There is a known disease-causing (pathogenic or likely pathogenic) variant(s) in a blood relative (known familial mutation), OR;
 - v. Genetic diagnosis has been clinically confirmed in an affected blood relative, but genetic testing was not or could not be done, OR;
 - vi. Family history and/or ethnicity of a member or reproductive partner is unknown, AND;
- c. Genetic testing should be tailored and limited to the number of genes or tests reasonably necessary to establish carrier status when the carrier frequency is one in 100 or greater (e.g., Ashkenazi Jewish multi-gene panel carrier screening is limited to conditions specified by the ACMG and/or ACOG), AND;
- d. Carrier testing is indicated only in adults. Carrier screening in minor children for adult-onset genetic conditions is not indicated, except in the case of a pregnancy of a minor child.
- 4. Prenatal screening and diagnosis:

IOH

- a. Noninvasive Prenatal Testing (NIPT) is considered medically necessary when it is ordered by a qualified specialist provider (e.g., OB/GYN, maternal fetal medicine) and is in accordance with the most current recommendations by ACOG.
- b. Prenatal diagnostic genetic testing of a fetus is medically necessary for any pregnant person undergoing amniocentesis or chorionic villus sampling (CVS) for the diagnosis of a genetic condition/suspected fetal aneuploidy in accordance with ACOG recommendations.
- 5. *Preimplantation Genetic Diagnostic Testing (PGD) of an embryo*: When benefits for advanced reproductive technologies (ART), including but not limited to in-vitro fertilization (IVF), are available, JHHP considers preimplantation diagnostic genetic testing medically necessary when ANY of the following criteria are met:
 - 1. PGT for Monogenic/single gene defects (PGT-M):
 - 1. Both partners (or member and donor) are known carriers of a single autosomal recessive disorder, OR;
 - 2. One partner (or donor) is a known carrier of a single gene autosomal recessive disorder and the partners (or member and donor) have one offspring that has been diagnosed with that recessive disorder, OR;
 - 3. One partner (or donor) is affected by a single gene autosomal dominant disorder, OR;
 - 4. One partner (or donor) is a known carrier of an X-linked disorder, OR;
 - 5. One partner (or donor) has a 50% risk of having a single gene autosomal dominant disorder based on having an affected parent, but has chosen to forego pre-symptomatic testing as no treatment is available.
 - 2. PGD for Structural Chromosome Rearrangements (PGT-SR):
 - 1. One partner (or donor) has a known balanced or unbalanced translocation or known deletion/duplication.
 - 3. Unless specific benefits are provided under the member's contract, JHHP considers preimplantation genetic testing for aneuploidy (PGT-A) not medically necessary for ALL indications.
- 6. Hereditary cancer syndromes and cancer susceptibility:
 - a. An individual diagnosed with cancer suspected to be caused by an inherited pathogenic variant(s), OR;
 - b. An unaffected individual at risk of developing cancer due to family history, AND;
 - c. The corresponding $\underline{NCCN Guidelines^{TM}}$ criteria must be met.

	Johns Hopkins Health Plans	Policy Number Effective Date	CMS07.03
	Medical Policy Manual Medical Policy		04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	5 of 28

- 7. Germline testing, after a somatic variant is identified through the evaluation of solid or hematologic malignancy:
 - a. The gene/variant detected through tumor profiling is pathogenic or likely pathogenic and the test is to identify a potential hereditary etiology for the person's tumor, AND;

.

- b. The variant identified has a high rate of germline incidence based on gene and tumor type and/or family history (e.g., BRCA1/2, TP53, APC, CDH1 genes), AND;
- c. The corresponding <u>NCCN Guidelines™</u> or other published evidence-based clinical criteria for management (e.g., early cancer screening, lifestyle changes, prophylactic medications) must be met.
- 8. Genetic testing for heritable disorders of non-covered relatives:
 - a. The information is needed to adequately assess risk in the JHHP member, AND;
 - b. The information will directly impact the current specific medical treatment being delivered to the JHHP member, AND;
 - c. The non-JHHP member's benefit plan, if any, will not cover the test (a copy of the denial letter from the non-JHHP member's benefit plan must be provided or, in the case of individuals without a health insurance policy, a written statement documenting a lack of coverage).
- 9. Multi-gene panel:
 - a. Multiple genes are known to cause the same condition and a limited subset of genes does not account for the majority of disease-causing mutations (e.g., Noonan syndrome, Stickler syndrome), OR;
 - b. The clinical presentation is highly suspicious of a genetic disorder, but the constellation of findings in the personal or family history does not suggest a specific diagnosis or limited set of conditions (e.g., epilepsy, intellectual disability, hearing loss, retinal disorders), AND;
 - c. Only one multi-gene panel should be requested at one time. Multi-gene panel testing should be performed in a tiered fashion with independent justification for each panel requested.
- 10. Whole Exome Sequencing (WES):
 - a. The member is suspected to have a genetic disorder that demonstrates a high degree of genetic heterogeneity or with a phenotype or phenotypes, (e.g., intellectual disability, seizures, multiple congenital anomalies), AND;
 - b. The clinical presentation does not fit a well-defined genetic syndrome that can be diagnosed by a single gene or multi-gene panel, AND;
 - c. Documentation of pretest genetic counseling by a board-certified genetic counselor or geneticist, AND
 - d. WES is more efficient and cost-effective than a single-gene or multi-gene panel based on the diagnosis.
- 11. Whole Genome Sequencing (WGS): (Requires Medical Director review)
 - a. The member has been evaluated by a board-certified genetic provider, AND;
 - b. The test is intended for diagnostic use and the results are expected to affect clinical decision making (guiding treatment, surveillance, initiation or withdrawal of palliative care), AND;
 - c. The member presents with a complex genetic phenotype suggestive of a rare genetic condition, which may include unexplained developmental disabilities, intellectual disability or multiple congenital anomalies, AND;
 - d. The clinical presentation does not fit a well-defined genetic condition that can be diagnosed by standard clinical workup, including single-gene or multi-gene panel testing, AND;
 - e. WGS test is more practical than a sequential genetic testing approach (e.g., eliminating lower-yield or potentially unnecessary testing, reducing the financial and psychological impact of diagnostic uncertainty), which may allow identification of a molecularly confirmed diagnosis in a more timely manner, AND;
 - f. The clinical presentation is consistent with a condition in which non-coding variants in multiple genes are known to contribute to the etiology of the presentation (e.g., refractory or very-early onset inflammatory bowel disease, autoinflammatory disorders, multiple congenital anomalies), making WES not an appropriate option.
- 12. Chromosome analysis (karyotype):
 - a. A woman with a history of previous unexplained stillbirth or repeated (3 or more; 2 or more among infertile couples) first trimester miscarriages, OR;

	Johns Hopkins Health Plans	Effective Date 04/01/2	CMS07.03
	Medical Policy Manual Medical Policy		04/01/2024
			01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	6 of 28

b. A man whose partner has a history of previous unexplained stillbirth or repeated (3 or more; 2 or more among infertile couples) first trimester miscarriages, OR;

Vanian 11.0

- c. A man or woman with a first, second, or third-degree relative with an abnormal chromosome arrangement (translocation or inversion), OR;
- d. One of the following diagnoses is suspected: Turner Syndrome, Down Syndrome (trisomy 21), Klinefelter Syndrome, Trisomy X Syndrome, Edwards Syndrome (trisomy 18), Patau Syndrome (trisomy 13), OR;
- e. One of the following diagnoses was identified by chromosome microarray (CMA): Turner Syndrome, Down Syndrome (trisomy 21), Klinefelter Syndrome, Trisomy X Syndrome, Edwards Syndrome (Trisomy 18), Patau Syndrome (trisomy 13), copy number variant suggestive of a structural chromosome abnormality (i.e., unbalanced translocation, supernumerary chromosome, or inversion), OR;
- f. The parent of a child with a chromosomal abnormality, OR;
- g. A fetus with an increased risk for an uploidy based on prenatal screening result or ultrasound findings, OR;
- h. Males with azoospermia or severe oligospermia, OR;
- i. Females with ovarian failure.
- 13. Chromosome Microarray (CMA):
 - a. A member with unexplained developmental delay/intellectual disability OR;
 - b. A member with Autism Spectrum Disorder, OR;
 - c. A member or fetus with major congenital anomalies not specific to a well-delineated genetic syndrome, OR;
 - d. A member or fetus with an apparently isolated cardiac anomaly that is highly suggestive of a specific chromosomal condition (e.g., Tetralogy of Fallot and 22q11.2 deletion syndrome; supravalvular aortic stenosis and Williams Syndrome), OR;
 - e. A member or fetus with a first-degree family member with a chromosomal deletion/duplication detectable only in microarray not karyotype (chromosome abnormality).

V. DEFINITIONS

<u>Analytical Validity</u>: Refers to the laboratory assay's ability to accurately detect the presence or absence of the genetic variant of interest (McCarthy, NIH).

<u>Autoinflammatory diseases</u>: The autoinflammatory diseases constitute a family of disorders characterized by atypical activation of inflammatory pathways in the absence of antigen-directed autoimmunity. Classically, periodic fevers are the common presenting manifestation in cases of familial Mediterranean fever (FMF), TNF receptor-1 associated periodic syndrome (TRAPS), and neonatal-onset multisystem inflammatory disorder [NOMID]). However, the spectrum of autoinflammatory disorders continues to expand and now includes disorders in which recurrent fevers may be absent (e.g., deficiency of the interleukin (IL) 1 receptor antagonist (DIRA), syndrome of pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA), Blau syndrome (juvenile systemic granulomatosis) (Nigrovic, 2023).

<u>Clinical Utility</u>: Refers to whether the genetic testing result can provide information about diagnosis, treatment, management, or prevention of disease and improve health outcomes (NIH).

<u>Clinical Validity</u>: Refers to how well a positive genetic test result correlates with the risk of disease, drug response, or other outcomes. A clinically valid test conclusively shows the specific genetic variant increases the risk of having or developing a disease (NIH). There are two components of clinical validity. Scientific validity, referring to the scientifically valid association between the genetic variant and trait and predictive ability. Clinical validity encompasses specificity, sensitivity, prevalence, penetrance, positive predictive value (PPV), and negative predictive value (NPV) of the test. (McCarthy, NIH).

Exome: The part of the genome that includes all coding nuclear DNA sequences. The human exome comprises approximately 180,000 exomes that are transcribed into mature RNA (GeneReviews).

			Version 11.0
JOHNS HOPKINS	1	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	7 of 28

.

Exome Sequencing: (Whole Exome Sequencing) Sequence analysis of the exons of protein-coding genes in the genome is typically performed by target enrichment or capture of exons followed by next-generation sequencing (NGS). Exome sequencing techniques have non-standardized, highly variable coverage; of particular note are regions of the exome refractory to accurate sequencing by this method (including genes with a pseudogene, highly repetitive coding regions, and large deletions and duplications). Laboratories may also include sequence analysis of some noncoding regions of the genome (e.g., promoters, highly conserved regulatory sequences) (GeneReviews).

First-Degree Relative: A parent, full sibling, or child of an individual.

<u>Genome Sequencing</u>: (Whole Genome Sequencing) Sequence analysis of the genome including coding and noncoding regions typically performed by next-generation sequencing (NGS) of sheared genomic DNA; genome sequencing techniques have non-standardized, highly variable coverage (GeneReviews).

<u>Hayes Ratings</u>: Developed to reflect the strength of evidence, safety and efficacy of healthcare procedures, devices and interventions and their impact on health outcomes (Hayes Inc., 2021).

- *A*: Established benefit. Published evidence shows conclusively that safety and impact on health outcomes are comparable to or better than standard treatment/testing. Long-term safety and impact on health outcomes have been established, and other important questions concerning application of the technology have been answered.
- *B:* Some proven benefit. Published evidence indicates that safety and impact on health outcomes are at least comparable to standard treatment/testing. However, there are outstanding questions regarding long-term safety and impact on health outcomes, clinical indications, contraindications, optimal treatment/testing parameters, and/or effects in different patient subpopulations.
- *C:* Potential but unproven benefit. Some published evidence suggests that safety and impact on health outcomes are at least comparable to standard treatment/testing. However, substantial uncertainty remains about safety and/or impact on health outcomes because of poor-quality studies, sparse data, conflicting study results, and/or other concerns.
- *D1:* No proven benefit and/or not safe. Published evidence shows that the technology does not improve health outcomes or patient management for the reviewed application(s) or is unsafe.
- *D2*: Insufficient evidence. There is insufficient published evidence to assess the safety and/or impact on health outcomes or patient management.

<u>Immunohistochemistry (IHT)</u>: A laboratory method that uses monoclonal and polyclonal antibodies for the detection of specific antigens in tissue sections. The antibodies are usually linked to an enzyme or a fluorescent dye. After the antibodies bind to the antigen in the tissue sample, the enzyme or dye is activated, and the antigen can then be visualized under a microscope. Immunohistochemistry is used to help diagnose diseases, such as cancer. It may also be used to help tell the difference between different types of cancer (NIH).

<u>Karyotype</u>: A photographic representation of the chromosomes of a single cell, cut and arranged in pairs based on their size and banding pattern according to a standard classification (GeneReviews).

<u>Molecular Genetic Testing</u>: A term widely used in clinical genetics encompassing the diverse techniques used to identify the molecular basis of genetic disease. Examples of molecular genetic tests include: genotyping to detect specific pathogenic variants; sequencing of a gene to detect pathogenic variants; amplification or hybridization methods to detect copy number variants involving one or more genes; methylation-specific techniques to detect epigenetic changes that influence gene expression; and exome and genomic sequencing (GeneReviews).

<u>Multi-Gene Panel</u>: Simultaneous molecular testing of multiple genes associated with the same or similar clinical phenotypes. The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and over

			Version 11.0
JOHNS HOPKINS	Medical Policy Manual Medical Policy	Policy Number	CMS07.03
		Effective Date	04/01/2024
		Approval Date	01/16/2024
		Supersedes Date	11/01/2023
	Genetic Testing	Page	8 of 28

.

time. Methods used may include sequence analysis, deletion/duplication analysis, or other non-sequencing-based tests (GeneReviews).

<u>Polygenic Risk Score (PRG; PRS</u>): An estimate of an individual's genetic risk for a specific polygenic phenotype that is derived from contributions of alleles at multiple loci, up to thousands. Allele-specific contributions are estimated using specialized linear regression methods. The scores are typically generated in a model-building population, then validated in additional independent test populations. PGR is synonymous with polygenic score and contrasts with genetic risk score, which calculates the contribution of the known risk alleles carried by an individual (Raby & Blank, 2023).

<u>Second-Degree Relative</u>: A relative who shares one quarter of an individual's genes (grandparent, grandchild, uncle, aunt, nephew, niece, half-sibling) (GeneReviews).

<u>Single Nucleotide Polymorphism (SNP)</u>: A polymorphism (difference in base sequence) that affects a single base pair. This terminology was previously used to refer to variation that had a population frequency of at least 1 percent. The term SNP is commonly used in research such as in genome-wide association studies (GWAS) (Raby & Blank, 2023).

Technology Evaluation Criteria (TEC): A service, device or supply must meet all of the following criteria:

- 1. The technology must have final approval from the appropriate government regulatory bodies for intended use
- 2. There must be sufficient scientific evidence-based studies to permit conclusions concerning the effect of the technology on health outcomes
- 3. The technology must improve the member's net health outcome
- 4. The technology must be as beneficial as any established alternatives
- 5. The improvement must be attainable outside the investigational setting

VI. BACKGROUND

The purpose of genetic testing is to determine the likelihood that an individual has or will develop a certain condition or disease phenotype, and in some cases to characterize the likely response to treatment. The factors influencing genetic testing and diagnosis are technical considerations (accuracy of testing), the existing knowledge base (certainty regarding pathogenicity of the variants identified), and biologic factors (inheritance pattern, penetrance, and expressivity) (Kohlmann & Slavotinek, 2022).

Testing can involve a single gene, a panel of genes, or the entire exome or genome. For each gene, it is possible to analyze a single variant (e.g., factor V Leiden), a panel of commonly observed variants, or the entire coding nucleotide sequence. The methods used to identify specific variants include Sanger sequencing, microarray technologies, and next-generation sequencing (NGS). Other methods include cytogenetic analysis and fluorescence in situ hybridization, which can be used to assess for alterations in chromosome number or structure (Kohlmann & Slavotinek, 2022).

Carrier screening is performed on prospective parents to identify genetic risks that can be passed to offspring. Carriers themselves are unaffected but at risk of producing affected children. Increasing population intermixing confounds what people believe to be their ethnicity, thus carrier screening panels should be inclusive of diverse populations. Commercial laboratories offer test panels that screen for only a few, or up to several hundred, disorders. The majority are autosomal recessive, but some may be X-linked or autosomal dominant single gene disorders. Selection of the disorders in the panel is generally based on gene frequency and inclusion of pathogenic variants within a disorder that contribute to the highest detection of carriers (Rink, 2023).

Guidelines from professional organizations usually recommend that the condition being screened for should be a health problem associated with one or more of the following:

JOHNS HOPKINS	Johns Hopkins Health Plans	Policy Number Effective Date	CMS07.03
	Medical Policy Manual Medical Policy		04/01/2024
		Approval Date	01/16/2024
		Supersedes Date	11/01/2023
	Genetic Testing	Page	9 of 28

- Cognitive disability
- Need for surgical or medical intervention
- Poor quality of life
- Prenatal diagnosis that could lead to prenatal intervention to improve perinatal outcome, delivery interventions to optimize newborn and infant outcome, parental education regarding special medical needs and intervention after birth (Rink, 2023).

The American College of Medical Genetics (ACMG) recommends routinely offering carrier screening to people with Ashkenazi Jewish descent for the following nine disorders: Tay-Sachs disease, Canavan disease, cystic fibrosis, familial dysautonomia, mucolipidosis IV, Niemann Pick disease type A, Fanconi anemia group C, Bloom Syndrome, and Gaucher disease, because of carrier detection rates \geq 90% and population carrier frequency of \geq 1%. The American College of Obstetricians and Gynecologists (ACOG) recommendations are to offer an expanded panel with the addition of the following five disorders: familial hyperinsulinism, glycogen storage disease type I, Joubert syndrome, maple syrup urine disease, and Usher syndrome. In addition, both the ACMG and ACOG recommend offering spinal muscular atrophy carrier screening to all pregnant people or people planning pregnancy, regardless of race or ethnicity (Roman, 2022).

Whole exome sequencing (WES) and whole genome sequencing (WGS) have built upon the advances introduced by NGS (Lapin, 2016). These techniques are reflective of the advancement in molecular biology technology – sequencing the entire human genome was a 12-year process in the 1990's, but it is now completed in a little more than one day (International Human Geome Sequencing Consortium, 2004). A current concern about performing WES and WGS on individuals is the detection of variants of unknown significance (VUS) in genes that are unrelated to the phenotype. There are gene variants about which there is currently no clear guidance regarding their clinical consequences (McDermott, 2015; Schulz, 2015). However, there is expanding evidence of advantages of exome and genome sequencing, including the ability to detect clinically significant variants in genes that were not initially considered by the clinician and the ability to effectively evaluate genetic etiology for multiple disease states with a single test (Chinn, 2021).

The ACMG 2021 evidence-based Clinical Guidelines recommend exome and genome sequencing to be considered as a first-or second-tier test for pediatric patients with one or more congenital anomalies with onset prior to age one year, or developmental delay or intellectual disability with onset prior to age 18 years (Manickam et al., 2021). A Position Paper from the Paediatric IBD Porto Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition, published in 2021, has summarized their recommendations stating that genomic technologies should be considered an integral part of multidisciplinary care to investigate patients at risk for monogenic forms of inflammatory bowel disease (Uhlig et al., 2021). Acknowledging the current lack of published evidence of clinical utility for the adult population and across various ancestral groups, Shich et al. published a systematic review suggesting that there is evidence for a higher range of diagnostic yield of exome/genome sequencing compared to standard genetic tests, particularly in neurological and acute indications (2021). The Medical Genome Initiative, a consortium of leading healthcare research organizations in the US and Canada, formed in 2020 sought to address the lack of standards and best practices for the interpretation and reporting of clinical diagnostic WGS. Their current publication, 'Best practices for the interpretation and reporting of clinical diagnostic WGS. Their current publication, 'Best practices for the interpretation and reporting of clinical whole genome sequencing' includes recommendations for analysis and reporting of VUS, emphasizing the need for open communication between ordering providers and the laboratory regarding reporting decisions, particularly for more challenging cases when there is uncertainty as to whether a finding aligns with patient phenotype (Austin-Tse et al, 2022).

Understanding and identifying changes in a patient's genome through genetic testing can aid in clinical decision-making and prove to be cost-effective. The administration of drugs to a patient as a result of genetic testing can also reduce risk/side effects while maximizing benefits. Interpretation of genetic testing results transcends many disciplines within medicine. Laboratory scientists, pathologists, genetic counselors, physicians, and nurses all collaborate to ensure accurate interpretation of results and to discuss treatment options for patients.

	Johns Hopkins Health Plans	Policy NumberCMS07.03Effective Date04/01/2024Approval Date01/16/2024Supersedes Date11/01/2023Page10 of 28	CMS07.03
	Medical Policy Manual Medical Policy		04/01/2024
			01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	10 of 28

Vancian 11.0

VII. CODING DISCLAIMER

CPT[®] Copyright 2024 American Medical Association. All rights reserved. CPT is a registered trademark of the American Medical Association.

Note: The following CPT/HCPCS codes are included below for informational purposes and may not be all inclusive. Inclusion or exclusion of a CPT/HCPCS code(s) below does not signify or imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member's specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee of payment. Other policies and coverage determination guidelines may apply.

Note: All inpatient admissions require preauthorization.

Adherence to the provisions in this policy may be monitored and addressed through post payment data analysis and/or medical review audits

Employer Health Programs (EHP): Specific Summary Plan Descriptions (SPDs) supersedes JHHP Medical Policy. If there are no criteria in the SPD, apply the Medical Policy criteria.

US Family Health Plan (USFHP): Regulatory guidance supersedes JHHP Medical Policy. If there are no TRICARE policies, or other regulatory guidelines, apply the Medical Policy criteria.

VIII. CODING INFORMATION

	CPT [®] CODES ARE FOR INFORMATIONAL PURPOSES ONLY
CPT[®] CODES	DESCRIPTION
0016U	Oncology (hematolymphoid neoplasia), RNA, BCR/ABL1 major and minor breakpoint fusion transcripts, quantitative PCR amplification, blood or bone marrow, report of fusion not detected or detected with quantitation
0017U	Oncology (hematolymphoid neoplasia), JAK2 mutation, DNA, PCR amplification of exons 12-14 and sequence analysis, blood or bone marrow, report of JAK2 mutation not detected or detected
0027U	JAK2 (Janus kinase 2) (eg, myeloproliferative disorder) gene analysis, targeted sequence analysis exons 12-15
0040U	BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocation analysis, major breakpoint, quantitative
0046U	FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia) internal tandem duplication (ITD) variants, quantitative
0049U	NPM1 (nucleophosmin) (eg, acute myeloid leukemia) gene analysis, quantitative
0050U	Targeted genomic sequence analysis panel, acute myelogenous leukemia, DNA analysis, 194 genes, interrogation for sequence variants, copy number variants or rearrangements
0060U	Twin zygosity, genomic targeted sequence analysis of chromosome 2, using circulating cell-free fetal DNA in maternal blood

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
EALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	11 of 28
81105	Human Platelet Antigen 1 genotyping (HPA-1), ITGB3 (integrin, beta 3 CD61 [GPIIIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], p analysis, common variant, HPA-1a/b (L33P)		
81106	Human Platelet Antigen 2 genotyping (HPA-2), GP1BA (glycoprotein 2 [GPIba]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-tran common variant, HPA-2a/b (T145M)		
81107	Human Platelet Antigen 3 genotyping (HPA-3), ITGA2B (integrin, alpl of IIb/IIIa complex], antigen CD41 [GPIIb]) (eg, neonatal alloimmune transfusion purpura), gene analysis, common variant, HPA-3a/b (I843S	thrombocytopenia [N	
81108	Human Platelet Antigen 4 genotyping (HPA-4), ITGB3 (integrin, beta 3 CD61 [GPIIIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], p analysis, common variant, HPA-4a/b (R143Q)		-
81109	Human Platelet Antigen 5 genotyping (HPA-5), ITGA2 (integrin, alpha 2 [CD49B, alpha 2 subunit of VLA-2 receptor] [GPIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant (eg, HPA-5a/b (K505E))		
81110	Human Platelet Antigen 6 genotyping (HPA-6w), ITGB3 (integrin, beta CD61] [GPIIIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], j analysis, common variant, HPA-6a/b (R489Q)		
81111	Human Platelet Antigen 9 genotyping (HPA-9w), ITGA2B (integrin, al of IIb/IIIa complex, antigen CD41] [GPIIb]) (eg, neonatal alloimmune transfusion purpura), gene analysis, common variant, HPA-9a/b (V837)	thrombocytopenia [N	-
81112	Human Platelet Antigen 15 genotyping (HPA-15), CD109 (CD109 mol thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, co	-	
81120	IDH1 (isocitrate dehydrogenase 1 [NADP+], soluble) (eg, glioma), com	nmon variants (eg, R	132H, R132C
81121	IDH2 (isocitrate dehydrogenase 2 [NADP+], mitochondrial) (eg, gliom R172M)	a), common variants	(eg, R140W,
81161	DMD (dystrophin) (eg, Duchenne/Becker muscular dystrophy) deletion performed	analysis and duplica	ation analysis
81170	ABL1 (ABL proto-oncogene 1, non-receptor tyrosine kinase) (eg, acqui inhibitor resistance), gene analysis, variants in the kinase domain	ired imatinib tyrosine	e kinase
81171	AFF2 (AF4/FMR2 family, member 2 [FMR2]) (eg, fragile X mental re- evaluation to detect abnormal (eg, expanded) alleles	tardation 2 [FRAXE]) gene analys
81172	AFF2 (AF4/FMR2 family, member 2 [FMR2]) (eg, fragile X mental ret characterization of alleles (eg, expanded size and methylation status)	tardation 2 [FRAXE]) gene analys
81173	AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kenne inactivation) gene analysis; full gene sequence	edy disease, X chrom	osome
81174	AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kenne inactivation) gene analysis; known familial variant	edy disease, X chrom	osome
81175	ASXL1 (additional sex combs like 1, transcriptional regulator) (eg, mye myeloproliferative neoplasms, chronic myelomonocytic leukemia), gen	• • •	

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy Subject	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
ALTH PLANS		Supersedes Date	11/01/2023
	Genetic Testing	Page	12 of 28
81176	ASXL1 (additional sex combs like 1, transcriptional regulator) (eg, r myeloproliferative neoplasms, chronic myelomonocytic leukemia), g analysis (eg, exon 12)		
81177	ASXL1 (additional sex combs like 1, transcriptional regulator) (eg, r myeloproliferative neoplasms, chronic myelomonocytic leukemia), g analysis (eg, exon 12)	• • • •	
81178	ATXN1 (ataxin 1) (eg, spinocerebellar ataxia) gene analysis, evaluat alleles	ion to detect abnormal ((eg, expanded)
81179	ATXN2 (ataxin 2) (eg, spinocerebellar ataxia) gene analysis, evaluat alleles	ion to detect abnormal ((eg, expanded)
81180	ATXN3 (ataxin 3) (eg, spinocerebellar ataxia, Machado-Joseph disea abnormal (eg, expanded) alleles	ase) gene analysis, evalu	ation to detec
81181	ATXN7 (ataxin 7) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles		
81182	ATXN8OS (ATXN8 opposite strand [non-protein coding]) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles		
81183	ATXN10 (ataxin 10) (eg, spinocerebellar ataxia) gene analysis, evaluexpanded) alleles	ation to detect abnorma	al (eg,
81184	CACNA1A (calcium voltage-gated channel subunit alpha1 A) (eg, spectrum evaluation to detect abnormal (eg, expanded) alleles	pinocerebellar ataxia) g	ene analysis;
81185	CACNA1A (calcium voltage-gated channel subunit alpha1 A) (eg, s gene sequence	pinocerebellar ataxia) g	ene analysis; f
81186	CACNA1A (calcium voltage-gated channel subunit alpha1 A) (eg, sp known familial variant	pinocerebellar ataxia) g	ene analysis;
81187	CNBP (CCHC-type zinc finger nucleic acid binding protein) (eg, my evaluation to detect abnormal (eg, expanded) alleles	otonic dystrophy type 2	2) gene analys
81188	CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis; expanded) alleles	evaluation to detect ab	normal (eg,
81189	CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis;		
81190	CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis;		(s)
81200	ASPA (aspartoacylase) (eg,Canavan disease) gene analysis, commor		
81201	APC (adenomatous polyposis coli) (eg, familial adenomatosis polypo analysis; full gene sequence		_
81202	APC (adenomatous polyposis coli) (eg, familial adenomatosis polypo analysis; known familial variants		_
81203	APC (adenomatous polyposis coli) (eg, familial adenomatosis polypo analysis; duplication/deletion variants	osis [FAP], attenuated F	FAP) gene
81204	AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Ker inactivation) gene analysis; characterization of alleles (eg, expanded	•	

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
EALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	13 of 28
81205	BCKDHB (branched-chain keto acid dehydrogenase E1, beta polype gene analysis, common variants (eg, R183P, G2785, E422X)	ptide) (eg, Maple syrup	urine diseas
81206	BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocat qualitative or quantitative	ion analysis; major brea	kpoint,
81207	BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocat qualitative or quantitative	ion analysis; minor brea	ıkpoint,
81208	BCR/ABL1 (t(9;22)) (eg, chronic myelogenous leukemia) translocat qualitative or quantitative	ion analysis; other brea	kpoint,
81209	BLM (Bloom syndrome, RecQ helicase-like) (eg, Bloom syndrome)	gene analysis, 2281del	5ins7 variant
81218	CEBPA (CCAAT/enhancer binding protein [C/EBP], alpha) (eg, acu full gene sequence	te myeloid leukemia), g	gene analysis
81219	CALR (calreticulin) (eg, myeloproliferative disorders), gene analysis	s, common variants in e	xon 9
81220	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cy familial variants	stic fibrosis) gene analy	vsis; known
81221	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cy familial variants	stic fibrosis) gene analy	vsis; known
81222	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cy deletion variants	stic fibrosis) gene analy	vsis; duplicat
81223	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cy sequence	stic fibrosis) gene analy	vsis; full gene
81224	CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cy poly-T analysis (eg, male infertility)	stic fibrosis) gene analy	vsis; intron 8
81228	Cytogenomic constitutional (genome-wide) microarray analysis; inte copy number variants (eg, bacterial artificial chromosome [BAC] or hybridization [CGH] microarray analysis)	• •	-
81229	Cytogenomic constitutional (genome-wide) microarray analysis; inte number and single nucleotide polymorphism (SNP) variants for chro	• •	•
81233	BTK (Bruton's tyrosine kinase) (eg, chronic lymphocytic leukemia) g C481S, C481R, C481F)	gene analysis, common	variants (eg,
81234	DMPK (DM1 protein kinase) (eg, myotonic dystrophy type 1) gene a (expanded) alleles	analysis; evaluation to d	letect abnorn
81236	EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) myeloproliferative neoplasms) gene analysis, full gene sequence	(eg, myelodysplastic sy	ndrome,
81237	EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) gene analysis, common variant(s) (eg, codon 646)	(eg, diffuse large B-cell	lymphoma)
81238	F9 (coagulation factor IX) (eg, hemophilia B), full gene sequence		
81239	DMPK (DM1 protein kinase) (eg, myotonic dystrophy type 1) gene a expanded size)	analysis; characterizatio	n of alleles (
81240	F2 (prothrombin, coagulation factor II) (eg, hereditary hypercoagulal	bility) gene analysis, 20	210G>A var

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
ALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	14 of 28
81241	F5 (coagulation Factor V) (eg, hereditary hypercoagulability gene anal	ysis, Leiden variant	
81242	FANCC (Fanconi anemia, complementation group C) (eg, Fanconi ane variant (eg, IVS4+4A>T)	emia type C) gene ana	llysis, commo
81243	FMR1 (Fragile X mental retardation 1) (eg, fragile X mental retardatio abnormal (eg, expanded) alleles	n) gene analysis; eva	luation to det
81244	FMR1 (Fragile X mental retardation 1) (eg, fragile X mental retardatio alleles (eg, expanded size and methylation status)	n) gene analysis; cha	racterization
81245	FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia), get duplication (ITD) variants (ie, exons 14, 15)	ne analysis; internal ta	andem
81246	FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia), ger (TKD) variants (eg, D835, I836)	ne analysis; tyrosine l	kinase domai
81247	G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; common variant(s) (eg, A, A-)		
81248	G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; known familial variant(s)		
81249	G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; full gene sequence		
81250	G6PC (glucose-6-phosphatase, catalytic subunit) (eg, Glycogen storage disease) gene analysis, common variants (eg, R83C, Q347X)	e disease, Type 1a, vo	on Gierke
81251	GBA (glucosidase, beta, acid) (eg, Gaucher disease) gene analysis, cor L444P, IVS2+1G>A)	nmon variants (eg, N	370S, 84GG,
81252	GJB2 (gap junction protein, beta 2, 26kDa, connexin 26) (eg, nonsyndr gene sequence	romic hearing loss) go	ene analysis;
81253	GJB2 (gap junction protein, beta 2, 26kDa, connexin 26) (eg, nonsyndr known familial variants	romic hearing loss) go	ene analysis;
81254	GJB6 (gap junction protein, beta 6, 30kDa, connexin 30) (eg, nonsyndr common variants (eg, 309kb [del(GJB6-D13S1830)] and 232kb [del(G		ene analysis,
81255	HEXA (hexosaminidase A [alpha polypeptide]) (eg, Tay-Sachs disease (eg, 1278insTATC, 1421+1G>C, G269S)	e) gene analysis, com	mon variants
81256	HFE (hemochromatosis) (eg, hereditary hemochromatosis) gene analys H63D)	sis, common variants	(eg, C282Y,
81257	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassem: HbH disease), gene analysis, for common deletions or variant (eg, Sou Mediterranean, alpha3.7, alpha4.2, alpha20.5, and Constant Spring)	• •	•
81258	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassem HbH disease), gene analysis; known familial variant	ia, Hb Bart hydrops fo	etalis syndro
81259	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassem: HbH disease), gene analysis; full gene sequence	ia, Hb Bart hydrops fo	etalis syndro

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
EALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	15 of 28
81260	IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B-cell (eg, familial dysautonomia) gene analysis, common variants (eg, 2507		bociated protei
81269	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassem HbH disease), gene analysis; duplication/deletion variants	ia, Hb Bart hydrops f	etalis syndror
81270	JAK2 (Janus kinase 2) (eg, myeloproliferative disorder) gene analysis,	p.Val617Phe (V617F	F) variant
81271	HTT (huntingtin) (eg, Huntington disease) gene analysis; evaluation to alleles) detect abnormal (eg,	expanded)
81272	KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolo [GIST], acute myeloid leukemia, melanoma), gene analysis, targeted s 17, 18)		
81273	KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolo D816 variant(s)	g) (eg, mastocytosis),	gene analysis
81274	HTT (huntingtin) (eg, Huntington disease) gene analysis; characterizat	ion of alleles (eg, exp	anded size)
81284	FXN (frataxin) (eg, Friedreich ataxia) gene analysis; evaluation to detect abnormal (expanded) alleles		
81285	FXN (frataxin) (eg, Friedreich ataxia) gene analysis; characterization of alleles (eg, expanded size)		
81286	FXN (frataxin) (eg, Friedreich ataxia) gene analysis; full gene sequenc	e	
81288	MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) (eg, here cancer, Lynch syndrome) gene analysis; promoter methylation analysis	• • • •	colorectal
81289	FXN (frataxin) (eg, Friedreich ataxia) gene analysis; known familial v	ariant(s)	
81290	MCOLN1 (mucolipin 1) (eg, Mucolipidosis, type IV) gene analysis, co del6.4kb)	ommon variants (eg, I	VS3-2A>G,
81291	MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary hy common variants (eg, 677T, 1298C)	percoagulability) gen	e analysis,
81292	MLH1 (mutL homomlog 1, colon cancer, nonpolyposis type 2) (eg, he cancer, Lynch syndrome) gene analysis; full sequence analysis	reditary nonpolyposis	s colorectal
81293	MLH1 (mutL homomlog 1, colon cancer, nonpolyposis type 2) (eg, he cancer, Lynch syndrome) gene analysis; known familial variants	reditary nonpolyposis	s colorectal
81294	MLH1 (mutL homomlog 1, colon cancer, nonpolyposis type 2) (eg, he cancer, Lynch syndrome) gene analysis; duplication/deletion variants	reditary nonpolyposis	s colorectal
81295	MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1) (eg, here cancer, Lynch syndrome) gene analysis; full sequence analysis	ditary non-polyposis	colorectal
81296	MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1) (eg, here cancer, Lynch syndrome) gene analysis; known familial variants	ditary non-polyposis	colorectal
81297	MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1) (eg, here cancer, Lynch syndrome) gene analysis; duplication/deletion variants	ditary non-polyposis	colorectal
81298	MSH6 (mutS homolog 6 [E. coli] (eg, hereditary nonpolyposis colorec analysis; full sequence analysis	tal cancer, Lynch syn	drome) gene

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
ALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	16 of 28
81299	MSH6 (mutS homolog 6 [E. coli] (eg, hereditary nonpolyposis colorectal analysis; known familial variants	cancer, Lynch syn	drome) gene
81300	MSH6 (mutS homolog 6 [E. coli] (eg, hereditary nonpolyposis colorectal analysis; duplication/deletion variants	cancer, Lynch syn	drome) gene
81301	Microsatellite instability analysis (eg, hereditary nonpolyposis colorectal markers for mismatch repair deficiency (eg, BAT25, BAT26), includes co tissue, if performed	• •	
81302	MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome) gene analys	is; full sequence a	nalysis
81303	MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome) gene analys	is; known familial	variant
81304	MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome) gene analys	is; duplication/dele	etion variants
81305	MYD88 (myeloid differentiation primary response 88) (eg, Waldenstrom lymphoplasmacytic leukemia) gene analysis, p.Leu265Pro (L265P) varia	-	nia,
81310	NPM1 (nucleophosmin) (eg, acute myeloid leukemia) gene analysis, exon 12 variants		
81311	NRAS (neuroblastoma RAS viral [v-ras] oncogene homolog) (eg, colorectal carcinoma), gene analysis, variants in exon 2 (eg, codons 12 and 13) and exon 3 (eg, codon 61)		
81312	PABPN1 (poly[A] binding protein nuclear 1) (eg, oculopharyngeal muscular dystrophy) gene analysis, evaluation to detect abnormal (eg, expanded) alleles		
81313	PCA3/KLK3 (prostate cancer antigen 3 [non-protein coding]/kallikrein-reantigen]) ratio (eg, prostate cancer)	elated peptidase 3	prostate specifi
81314	PDGFRA (platelet-derived growth factor receptor, alpha polypeptide) (eg [GIST]), gene analysis, targeted sequence analysis (eg, exons 12, 18)	g, gastrointestinal s	tromal tumor
81315	PML/RARalpha, (t(15;17)), (promyelocytic leukemia/retinoic acid recept leukemia) translocation analysis; common breakpoints (eg, intron 3 and i		• •
81316	PML/RARalpha, (t(15;17)), (promyelocytic leukemia/retinoic acid recept leukemia) translocation analysis; single breakpoint (eg, intron 3, intron 6 quantitative		• •
81317	PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditar Lynch syndrome) gene analysis; full sequence analysis	y non-polyoisus co	lorectal cancer
81318	PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditar Lynch syndrome) gene analysis; known familial variants	y non-polyposis co	lorectal cancer
81319	PMS2 (postmeiotic segregation increased 2 [S. cerevisiae]) (eg, hereditar Lynch syndrome) gene analysis; duplication/deletion variants	y non-polyposis co	lorectal cancer
81320	PLCG2 (phospholipase C gamma 2) (eg, chronic lymphocytic leukemia) (eg, R665W, S707F, L845F)	gene analysis, com	imon variants
81321	PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTEN analysis; full sequence analysis	hamartoma tumor s	syndrome) gene
81322	PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTEN analysis; known familial variant	hamartoma tumor	syndrome) gen

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date Approval Date	04/01/2024 01/16/2024 11/01/2023
INS HOPKINS			
EALTH PLANS	<u>Subject</u>	Supersedes Date	
	Genetic Testing	Page	17 of 28
81323	PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTE analysis; duplication/deletion variant	EN hamartoma tumor :	syndrome) ge
81324	PMP22 (peripheral myelin protein 22) (eg, Charcot-Marie-Tooth, here pressure palsies) gene analysis; duplication/deletion analysis	ditary neuropathy wit	h liability to
81325	PMP22 (peripheral myelin protein 22) (eg, Charcot-Marie-Tooth, here pressure palsies) gene analysis; full sequence analysis	ditary neuropathy wit	h liability to
81326	PMP22 (peripheral myelin protein 22) (eg, Charcot-Marie-Tooth, here pressure palsies) gene analysis; known familial variant	ditary neuropathy wit	h liability to
81327	SEPT9 (Septin9) (eg, colorectal cancer) promoter methylation analysi	s	
81329	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular att deletion analysis (eg, carrier testing), includes SMN2 (survival of mot performed		-
81330	SMPD1 (sphingomyelin phosphodiesterase 1, acid lysosomal) (eg, Nie analysis, common variants (eg, R496L, L302P, fsP330)	emann-Pick disease, T	Type A) gene
81331	SNRPN/UBE3A (small nuclear ribonucleoprotein polypeptide N and ubiquitin protein ligase E3A) (eg, Prader-Willi syndrome and/or Angelman syndrome), methylation analysis		
81332	SERPINA1 (serpin peptidase inhibitor, clade A, alpha-1 antiproteinase, antitrypsin, member 1) (eg, alpha- antitrypsis deficiency), gene analysis, common variants (eg, *S and *Z)		
81333	TGFBI (transforming growth factor beta-induced) (eg, corneal dystrop (eg, R124H, R124C, R124L, R555W, R555Q)	bhy) gene analysis, co	mmon variar
81336	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular at sequence	cophy) gene analysis;	full gene
81337	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular at sequence variant(s)	cophy) gene analysis;	known famil
81343	PPP2R2B (protein phosphatase 2 regulatory subunit Bbeta) (eg, spino evaluation to detect abnormal (eg, expanded) alleles	cerebellar ataxia) gene	e analysis,
81344	TBP (TATA box binding protein) (eg, spinocerebellar ataxia) gene and (eg, expanded) alleles	alysis, evaluation to d	etect abnorm
81345	TERT (telomerase reverse transcriptase) (eg, thyroid carcinoma, gliob targeted sequence analysis (eg, promoter region)	lastoma multiforme) g	gene analysis
81361	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalasser variant(s) (eg, HbS, HbC, HbE)	nia, hemoglobinopath	y); common
81362	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalasser familial variant(s)	mia, hemoglobinopath	ny); known
81363	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalasser deletion variant(s)	mia, hemoglobinopath	y); duplicati
81364	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalasser sequence	nia, hemoglobinopath	y); full gene

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
NS HOPKINS		Approval Date	01/16/2024
ALTH PLANS	Subject	Supersedes Date	11/01/2023
	Genetic Testing	Page	18 of 28
81400	Molecular pathology procedure, Level 1 (eg, identification of single g techniques such as restriction enzyme digestion or melt curve analysis		IP] by
81401	Molecular pathology procedure, Level 2 (eg, 2-10 SNP's, 1 methylate [typically using nonsequencing target variant analysis], or detection o repeat)		
81402	Molecular pathology procedure, Level 3 (eg, >10 SNPs, 2-10 methyla variants [typically using non-sequencing target variant analysis], imm rearrangements, duplication/deletion variants of 1 exon loss of heterox [UPD])	unoglobulin and T-cel	l receptor gen
81403	Molecular pathology procedure, Level 4 (eg, analysis of single exon b >10 amplicons using multiplex PCR in 2 or more independent reaction deletion variants of 2-5 exons)	• •	
81404	Molecular pathology procedure, Level 5 (eg, analysis of 2-5 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 6-10 exons, or characterization of a dynamic mutation disorder, triplet repeat by Southern blot analysis)		
81405	Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis		
81406	Molecular pathology procedure, Level 7 (eg, analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons, cytogenomic array analysis for neoplasia)		
81407	Molecular pathology procedure, Level 8 (eg, analysis of 26-50 exons scannion or duplication/deletion variants of >50 exons, sequence anal	• •	•
81408	Molecular pathology procedure, Level 9 (eg, analysis of >50 exons in analysis)	a single gene by DNA	sequence
81410	Aortic dysfunction or dilation (eg, Marfan syndrome, Loeys Dietz syr IV, arterial tortuosity syndrome); genomic sequence analysis panel, m genes, including FBN1, TGFBR1, TGFBR2, COL3A1, MYH11, AC	nust include sequencing	g of at least 9
81411	Aortic dysfunction or dilation (eg, Marfan syndrome, Loeys Dietz syr IV, arterial tortuosity syndrome); duplication/deletion analysis panel, TGFBR2, MYH11, and COL3A1		
81412	Ashkenazi Jewish associated disorders (eg, Bloom syndrome, Canava dysautonomia, Fanconi anemia group C, Gaucher disease, Tay-Sachs panel, must include sequencing of at least 9 genes, including ASPA, H IKBKAP, MCOLN1, and SMPD1	disease), genomic sequ	uence analysis
81413	Cardiac ion channelopathies (eg, Brugada syndrome, long QT syndrom catecholaminergic polymorphic ventricular tachycardia); genomic seq sequencing of at least 10 genes, including ANK2, CASQ2, CAV3, KC KCNQ1, RYR2, and SCN5A	quence analysis panel, i	must include
81414	Cardiac ion channelopathies (eg, Brugada syndrome, long QT syndrom catecholaminergic polymorphic ventricular tachycardia); duplication/ include analysis of at least 2 genes, including KCNH2 and KCNQ1		
81415	Exome (eg, unexplained constitutional or heritable disorder or syndro	me); sequence analysis	6

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
INS HOPKINS		Approval Date	01/16/2024
EALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	19 of 28
81416	Exome (eg, unexplained constitutional or heritable disorder or syndrome comparator exome (eg, parents, siblings) (List separately in addition to compare the separately in addition to c		
81417	Exome (eg, unexplained constitutional or heritable disorder or syndrome) obtained exome sequence (eg, updated knowledge or unrelated condition	-	previously
81420	Fetal chromosomal aneuploidy (eg, trisomy 21, monosomy X) genomic s cell-free fetal DNA in maternal blood, must include analysis of chromosom		
81422	Fetal chromosomal microdeletion(s) genomic sequence analysis (eg, DiC syndrome), circulating cell-free fetal DNA in maternal blood	eorge syndrome, C	Cri-du-chat
81425	Genome (eg, unexplained constitutional or heritable disorder or syndrom	e); sequence analys	sis
81426	Genome (eg, unexplained constitutional or heritable disorder or syndrom comparator genome (eg, parents, siblings) (List separately in addition to		
81427	Genome (eg, unexplained constitutional or heritable disorder or syndrome); re-evaluation of previously obtained genome sequence (eg, updated knowledge or unrelated condition/syndrome)		
81430	Hearing loss (eg, nonsyndromic hearing loss, Usher syndrome, Pendred syndrome); genomic sequence analysis panel, must include sequencing of at least 60 genes, including CDH23, CLRN1, GJB2, GPR98, MTRNR1, MYO7A, MYO15A, PCDH15, OTOF, SLC26A4, TMC1, TMPRSS3, USH1C, USH1G, USH2A, and WFS1		
81431	Hearing loss (eg, nonsyndromic hearing loss, Usher syndrome, Pendred s analysis panel, must include copy number analyses for STRC and DFNB genes	•	
81432	Hereditary breast cancer-related disorders (eg, hereditary breast cancer, h endometrial cancer); genomic sequence analysis panel, must include sequincluding BRCA1, BRCA2, CDH1, MLH1, MSH2, MSH6, PALB2, PTF	encing of at least	10 genes, alwa
81433	Hereditary breast cancer-related disorders (eg, hereditary breast cancer, h endometrial cancer); duplication/deletion analysis panel, must include an MLH1, MSH2, and STK11	•	
81434	Hereditary retinal disorders (eg, retinitis pigmentosa, Leber congenital ar genomic sequence analysis panel, must include sequencing of at least 15 CRB1, EYS, PDE6A, PDE6B, PRPF31, PRPH2, RDH12, RHO, RP1, RI	genes, including A	BCA4, CNGA
81435	Hereditary colon cancer syndromes (eg, Lynch syndrome, familial adenomatosis polyposis); genomic sequence analysis panel, must include analysis of at least 7 genes, including APC, CHEK2, MLH1, MSH2, MSH6, MUTYH, and PMS2		
81436	Hereditary colon cancer syndromes (eg, Lynch syndrome, familial adenomatosis polyposis); duplication/ deletion gene analysis panel, must include analysis of at least 8 genes, including APC, MLH1, MSH2, MSH6, PMS2, EPCAM, CHEK2, and MUTYH		
81437	Hereditary neuroendocrine tumor disorders (eg, medullary thyroid carcin malignant pheochromocytoma or paraganglioma); genomic sequence ana sequencing of at least 6 genes, including MAX, SDHB, SDHC, SDHD, 7	lysis panel, must i	nclude

	Johns Hopkins Health Plans	Policy Number	CMS07.03
	Medical Policy Manual Medical Policy	Effective Date	04/01/2024
NS HOPKINS		Approval Date	01/16/2024
ALTH PLANS	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	20 of 28
81438	Hereditary neuroendocrine tumor disorders (eg, medullary thyroid carci malignant pheochromocytoma or paraganglioma); duplication/deletion for SDHB, SDHC, SDHD, and VHL		
81439	Hereditary cardiomyopathy (eg, hypertrophic cardiomyopathy, dilated c right ventricular cardiomyopathy), genomic sequence analysis panel, m cardiomyopathy-related genes (eg, DSG2, MYBPC3, MYH7, PKP2, T	ust include sequenci	
81440	Nuclear encoded mitochondrial genes (eg, neurologic or myopathic phe must include analysis of at least 100 genes, including BCS1L, C10orf2, OPA1, PDSS2, POLG, POLG2, RRM2B, SCO1, SCO2, SLC25A4, SU TYMP	COQ2, COX10, DC	GUOK, MPV17
81442	Noonan spectrum disorders (eg, Noonan syndrome, cardio-facio-cutane LEOPARD syndrome, Noonan-like syndrome), genomic sequence anal of at least 12 genes, including BRAF, CBL, HRAS, KRAS, MAP2K1, I RIT1, SHOC2, and SOS1	ysis panel, must incl	ude sequencing
81443	Genetic testing for severe inherited conditions (eg, cystic fibrosis, Ashk [eg, Bloom syndrome, Canavan disease, Fanconi anemia type C, mucol Tay-Sachs disease], beta hemoglobinopathies, phenylketonuria, galacto panel, must include sequencing of at least 15 genes (eg, ACADM, ARS BCKDHB, BLM, CFTR, DHCR7, FANCC, G6PC, GAA, GALT, GBA MCOLN1, PAH)	ipidosis type VI, Ga semia), genomic seq A, ASPA, ATP7B, I	ucher disease, uence analysis 3CKDHA,
81448	Hereditary peripheral neuropathies (eg, Charcot-Marie-Tooth, spastic panalysis panel, must include sequencing of at least 5 peripheral neuropa GJB1, MFN2, MPZ, REEP1, SPAST, SPG11, SPTLC1)	1 0 / 0	-
81450	Targeted genomic sequence analysis panel, hematolymphoid neoplasm when performed, 5-50 genes (eg, BRAF, CEBPA, DNMT3A, EZH2, FI KIT, MLL, NRAS, NPM1, NOTCH1), interrogation for sequence varia rearrangements, or isoform expression or mRNA expression levels, if p	LT3, IDH1, IDH2, J. nts, and copy numbe	AK2, KRAS,
81455	Targeted genomic sequence analysis panel, solid organ or hematolymphoid neoplasm, DNA and RNA analysis when performed, 51 or greater genes (eg, ALK, BRAF, CDKN2A, CEBPA, DNMT3A, EGFR, ERBB2, EZH2, FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MLL, NPM1, NRAS, MET, NOTCH1, PDGFRA PDGFRB, PGR, PIK3CA, PTEN, RET), interrogation for sequence variants and copy number variants or rearrangements, if performed		
81460	Whole mitochondrial genome (eg, Leigh syndrome, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS], myoclonic epilepsy with ragged-red fibers [MERFF], neuropathy, ataxia, and retinitis pigmentosa [NARP], Leber hereditary optic neuropathy [LHON]), genomic sequence, must include sequence analysis of entire mitochondrial genome with heteroplasmy detection		
81465	Whole mitochondrial genome large deletion analysis panel (eg, Kearns-Sayre syndrome, chronic progressive external ophthalmoplegia), including heteroplasmy detection, if performed		
81470	X-linked intellectual disability (XLID) (eg, syndromic and non-syndrom analysis panel, must include sequencing of at least 60 genes, including FMR1, HUWE1, IL1RAPL, KDM5C, L1CAM, MECP2, MED12, MID	ARX, ATRX, CDKI	.5, FGD1,

	Johns Hopkins Health Plans Medical Policy Manual	Policy Number	CMS07.03
	Medical Policy	Effective Date	04/01/2024
OHNS HOPKINS		Approval Date	01/16/2024
	<u>Subject</u> Genetic Testing	Supersedes Date Page	11/01/2023 21 of 28
81471	X-linked intellectual disability (XLID) (eg, syndromic and non-syndrogene analysis, must include analysis of at least 60 genes, including AI HUWE1, IL1RAPL, KDM5C, L1CAM, MECP2, MED12, MID1, OC	RX, ATRX, CDKL5, F	GD1, FMR1,
81507	Fetal aneuploidy (trisomy 21, 18, and 13) DNA sequence analysis of s plasma, algorithm reported as a risk score for each trisomy	selected regions using	maternal
81519	Oncology (breast), mRNA, gene expression profiling by real-time RT fixed paraffin embedded tissue, algorithm reported as recurrence score	0	izing formalin
83006	Growth stimulation expressed gene 2 (ST2, Interleukin 1 receptor like	-1)	
88245	Chromosome analysis for breakage syndromes; baseline Sister Chrom	atid Exchange (SCE)	20-25 cells
88248	Chromosome analysis for breakage syndromes; baseline breakage, score 50-100 cells, count 20 cells, 2 karyotypes (eg, for ataxia telangiectasia, Fanconi anemia, fragile X)		
88249	Chromosome analysis for breakage syndromes; score 100 cells, clastogen stress (eg, diepoxybutane, mitomycin C, ionizing radiation, UV radiation)		
88261	Chromosome analysis; count 5 cells, 1 karyotype, with banding		
88262	Chromosome analysis; count 15-20 cells, 2 karyotypes, with banding		
88263	Chromosome analysis; count 45 cells for mosaicism, 2 karyotypes, with	th banding	
88264	Chromosome analysis; analyze 20-25 cells		
88267	Chromosome analysis, amniotic fluid or chorionic villus, count 15 cel	ls, 1 karyotype, with b	anding
88269	Chromosome analysis, in situ for amniotic fluid cells, count cells fron banding	1 6-12 colonies, 1 kary	otype, with
88271	Molecular cytogenetics; DNA probe, each (eg, FISH)		
88272	Molecular cytogenetics; chromosomal in situ hybridization, analyze 3 markers)	-5 cells (eg, for deriva	tives and
88273	Molecular cytogenetics; chromosomal in situ hybridization, analyze 1	0-30 cells (eg, for mic	rodeletions)
88274	Molecular cytogenetics; interphase in situ hybridization, analyze 25-9	9 cells	
88275	Molecular cytogenetics; interphase in situ hybridization, analyze 100-	300 cells	
88280	Chromosome analysis; additional karyotypes, each study		
88283	Chromosome analysis; additional specialized banding technique (eg, 1	NOR, C-banding)	
88285	Chromosome analysis; additional cells counted, each study		
88289	Chromosome analysis; additional high resolution study		
88291	Cytogenetics and molecular cytogenetics, interpretation and report		

	HCPCS CODES ARE FOR INFORMATIONAL PURPOSES ONLY		
HCPCS CODES	DESCRIPTION		
S3800	Genetic testing for amyotrophic lateral sclerosis (als)		

INS HOPKINS	Johns Hopkins Health Plans Medical Policy Manual Medical Policy	Policy Number	CMS07.03
		Effective Date	04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u> Genetic Testing	Supersedes Date	11/01/2023
		Page	22 of 28
S3840	DNA analysis for germline mutations of the RET proto-oncogene for susc neoplasia type 2	ceptibility to multi	ple endocrine
S3841	Genetic testing for retinoblastoma		
S3842	Genetic testing for Von Hippel-Lindau disease		
S3844	DNA analysis of the connexin 26 gene (GJB2) for susceptibility to congenital, profound deafness		
S3845	Genetic testing for alpha-thalassemia		
S3846	Genetic testing for hemoglobin E beta-thalassemia		
S3849	Genetic testing for Niemann-Pick disease		
S3850	Genetic testing for sickle cell anemia		
S3852	DNA analysis for APOE epsilon 4 allele for susceptibility to Alzheimer's disease		
S3853	Genetic testing for myotonic muscular dystrophy		
S3861	Genetic testing, sodium channel, voltage-gated, type V, alpha subunit (SCN5A) and variants for suspected Brugada syndrome		
S3865	Comprehensive gene sequence analysis for hypertrophic cardiomyopathy		
S3866	Genetic analysis for a specific gene mutation for hypertrophic cardiomyopathy (HCM) in an individual with a known HCM mutation in the family		

Version 11.0

IX. <u>REFERENCE STATEMENT</u>

Analyses of the scientific and clinical references cited below were conducted and utilized by the Johns Hopkins Health Plans (JHHP) Medical Policy Team during the development and implementation of this medical policy. The Medical Policy Team will continue to monitor and review any newly published clinical evidence and revise the policy and adjust the references below accordingly if deemed necessary.

X. <u>REFERENCES</u>

Aartsma-Rus, A., Hegde, M., Ben-Omran, T., Buccella, F., Ferlini, A., Gallano, P., Howell, R. R., Leturcq, F., Martin, A. S., Potulska-Chromik, A., Saute, J. A., Schmidt, W. M., Sejersen, T., Tuffery-Giraud, S., Uyguner, Z. O., Witcomb, L. A., Yau, S., & Nelson, S. F. (2019). Evidence-Based Consensus and Systematic Review on Reducing the Time to Diagnosis of Duchenne Muscular Dystrophy. *The Journal of Pediatrics*, *204*, 305–313.e14. doi.org/10.1016/j.jpeds.2018.10.043

Abu-El-Haija, A., Reddi, H.V., Wand, H., Rose, N.C., Mori, M., Qian, E., Murray, M.F., & ACMG Professional Practice and Guidelines Committee (2023). The clinical application of polygenic risk scores: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). *Genetics in Medicine: Official Journal of the American College of Medical Genetics*, 25(5), 100803. doi.org/10.1016/j.gim.2023.100803

Aetna (2023, July 1). Genetic Testing. Clinical Policy Bulletin Number: 0140. http://www.aetna.com/

American College of Obstetricians and Gynecologists (2021). Committee Opinion No. 816. Consumer Testing for Disease Risk. *Obstetrics & Gynecology*, *137*(1), e1-e6. doi.org/10.1097/aog.00000000004200

American College of Obstetricians and Gynecologists (2020). Committee Opinion No. 799. Preimplantation Genetic Testing. *Obstetrics & Gynecology*, 135(3), e133-e137. <u>doi.org/10.1097/aog.00000000003714</u>

JOHNS HOPKINS	Johns Hopkins Health Plans Medical Policy Manual Medical Policy	Policy Number Effective Date Approval Date	CMS07.03 04/01/2024 01/16/2024
		Supersedes Date	11/01/2023
		Page	23 of 28

Vanian 11.0

American College of Obstetricians and Gynecologists (2017). Committee Opinion No. 691. Carrier Screening for Genetic Conditions. *Obstetrics & Gynecology*, 129(3), e41-e55. <u>doi.org/10.1097/AOG.000000000001952</u>

American College of Obstetricians and Gynecologists Committee on Genetics (2017; Reaffirmed 2020). Committee Opinion No. 690. Carrier Screening in the Age of Genomic Medicine. *Obstetrics & Gynecology*, 129(3), e35-e40. doi.org/10.1097/ AOG.0000000000001951

American College of Obstetricians and Gynecologists Committee on Genetics (2012). Committee Opinion No. 545. Noninvasive Prenatal Testing for Fetal Aneuploidy. *Obstetrics & Gynecology*, *120*(6), 1532–1534. doi.org/10.1097/01.aog.0000423819.85283.f4

American College of Obstetricians and Gynecologists' Committee on Practice Bulletins - Obstetrics, Committee on Genetics, & Society for Maternal-Fetal Medicine (2020). Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin No. 226. *Obstetrics and Gynecology*, *136*(4), e48–e69. doi.org/10.1097/AOG.00000000004084

American Lung Association (2022). Alpha-1 Antitrypsin Deficiency. https://www.lung.org/

Anthem. (2023, May 25). *Whole Genome Sequencing, Whole Exome Sequencing, Gene Panels, and Molecular Profiling*. Coverage Guideline #GENE.0052. <u>https://www.anthem.com/</u>

Austin-Tse, C. A., Jobanputra, V., Perry, D. L., Bick, D., Taft, R. J., Venner, E., Gibbs, R. A., Young, T., Barnett, S., Belmont, J. W., Boczek, N., Chowdhury, S., Ellsworth, K. A., Guha, S., Kulkarni, S., Marcou, C., Meng, L., Murdock, D. R., Rehman, A. U., Spiteri, E., ... Medical Genome Initiative. (2022). Best practices for the interpretation and reporting of clinical whole genome sequencing. *NPJ Genomic Medicine*, *7*(1), 27. doi.org/10.1038/s41525-022-00295-z

Bacino, C.A. (2021) Birth defects: Approach to evaluation. UpToDate. https://www.uptodate.com/

Brown, E. E., Murray, B., Vaishnav, J., Tampakakis, E., Barouch, L. A., James, C., Murphy, A. M., & Judge, D. P. (2020). Genetic Dilated Cardiomyopathy Due to TTN Variants Without Known Familial Disease. *Circulation. Genomic and Precision Medicine*, *13*(6), e003082. https://doi.org/10.1161/CIRCGEN.120.003082

Chinn, I. (2021). Genetic testing in patients with a suspected primary immunodeficiency or autoinflammatory syndrome. *UpToDate*. <u>https://www.uptodate.com/</u>

Cigna. (2022, July 15). *Genetic Testing for Hereditary Cancer Susceptibility Syndromes*. Medical Coverage Policy #0518. https://static.cigna.com/

Cirino, A., Ho, C. (2021). Hypertrophic Cardiomyopathy Overview. GeneReviews. https://www.ncbi.nlm.nih.gov/

Dimmock, D. P., Clark, M. M., Gaughran, M., Cakici, J. A., Caylor, S. A., Clarke, C., Feddock, M., Chowdhury, S., Salz, L., Cheung, C., Bird, L. M., Hobbs, C., Wigby, K., Farnaes, L., Bloss, C. S., Kingsmore, S. F., & RCIGM Investigators (2020). An RCT of Rapid Genomic Sequencing among Seriously III Infants Results in High Clinical Utility, Changes in Management, and Low Perceived Harm. *American Journal of Human Genetics*, *107*(5):942-952. doi.org/10.1016/j.ajhg.2020.10.003

Elliott, A. M., Adam, S., du Souich, C., Lehman, A., Nelson, T. N., van Karnebeek, C., Alderman, E., Armstrong, L., Aubertin, G., Blood, K., Boelman, C., Boerkoel, C., Bretherick, K., Brown, L., Chijiwa, C., Clarke, L., Couse, M., Creighton, S., Watts-Dickens, A., Gibson, W. T., ... Friedman, J. M. (2022). Genome-wide sequencing and the clinical diagnosis of genetic disease: The CAUSES study. *HGG Advances*, *3*(3), 100108. doi.org/10.1016/j.xhgg.2022.100108

eviCore Clinical Guidelines (2024). Laboratory Management Guidelines. https://www.evicore.com/

JOHNS HOPKINS	Medical Policy Manual	Policy Number	CMS07.03
		Effective Date	04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	24 of 28

Vancian 11.0

Farrell, P. M., White, T. B., Ren, C. L., Hempstead, S. E., Accurso, F., Derichs, N., Howenstine, M., McColley, S. A., Rock, M., Rosenfeld, M., Sermet-Gaudelus, I., Southern, K. W., Marshall, B. C., & Sosnay, P. R. (2017). Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. *The Journal of Pediatrics*, 181S, S4–S15.e1. doi.org/10.1016/j.jpeds.2016.09.064

GeneReviews[®](n.d.). *Glossary*. <u>https://www.ncbi.nlm.nih.gov/</u>

Ghidini, A. (2021). Diagnostic amniocentesis. UpToDate. https://www.uptodate.com/

Hayes, Inc. (2023). *Cell-Free DNA (cfDNA) [formerly NIPS, NIPT] Screening for Fetal Trisomy 21, 18, and 13 in Low-Risk Women with Singleton Pregnancy*. Clinical Utility Evaluation. <u>https://evidence.hayesinc.com/</u>

Hayes, Inc. (2023). *Clinical Utility of Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES) in Patients with Intellectual Disability (ID)*. Clinical Utility Evaluation. <u>https://evidence.hayesinc.com/</u>

Hayes, Inc. (2023). *Prenatal Whole Genome Sequencing and Prenatal Whole Exome Sequencing*. Clinical Utility Evaluation. https://evidence.hayesinc.com/

Hayes, Inc. (2023). Whole Exome/Genome Sequencing for Neuromuscular Disease and Movement Disorders in Adults. Clinical Utility Evaluation. <u>https://evidence.hayesinc.com/</u>

Hayes, Inc. (2022). *Cell-Free DNA (CfDNA) [formerly NIPS, NIPT] Screening for Fetal Trisomy 21, 18, and 13 in High-Risk Women.* Clinical Utility Evaluation. <u>https://evidence.hayesinc.com/</u>

Hayes, Inc. (2022). Whole Exome/Genome Sequencing for Previously Undiagnosed Pediatric Neurodevelopmental Disorders. Clinical Utility Evaluation. <u>https://evidence.hayesinc.com/</u>

Health Resources & Services Administration. (2018). Newborn Screening for SMA, Executive Summary. https://www.hrsa.gov/

Hershberger, R. E., Givertz, M. M., Ho, C. Y., Judge, D. P., Kantor, P. F., McBride, K. L., Morales, A., Taylor, M., Vatta, M., & Ware, S. M. (2018). Genetic Evaluation of Cardiomyopathy-A Heart Failure Society of America Practice Guideline. *Journal of Cardiac Failure*, 24(5), 281–302. doi.org/10.1016/j.cardfail.2018.03.004

Heyman, M.B. (2023). Hereditary pancreatitis. UpToDate. https://www.uptodate.com/

Higuchi, L.M. & Bousvaros, A. (2022). Clinical presentation and diagnosis of inflammatory bowel disease in children. *UpToDate*. <u>https://www.uptodate.com/</u>

Humana. (2023, March 1). Genetic Testing. Medical Coverage Policy #HUM-0551-011 http://apps.humana.com/

Hunter, J.E., Berry-Kravis, E., Hipp, H., Todd, P.K. (2019, November 21). *FMR1 Disorders*. GeneReviews. <u>https://www.ncbi.nlm.nih.gov/</u>

Ibañez, K., Polke, J., Hagelstrom, R. T., Dolzhenko, E., Pasko, D., Thomas, E., Daugherty, L. C., Kasperaviciute, D., Smith, K. R., WGS for Neurological Diseases Group, Deans, Z. C., Hill, S., Fowler, T., Scott, R. H., Hardy, J., Chinnery, P. F., Houlden, H., Rendon, A., Caulfield, M. J., Eberle, M. A., ... Genomics England Research Consortium (2022). Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. *The Lancet. Neurology*, *21*(3), 234–245. doi.org/10.1016/S1474-4422(21)00462-2

JOHNS HOPKINS	Medical Policy Manual Medical Policy	Policy Number	CMS07.03
		Effective Date	04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u>	Supersedes Date	11/01/2023
	Genetic Testing	Page	25 of 28

Vanian 11.0

International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. *Nature*, *431*(7011), 931-945. <u>doi.org/10.1038/nature03001</u>

Katkin, J.P. (2023). Cystic fibrosis: Clinical manifestations and diagnosis. UpToDate. https://www.uptodate.com

Kingsmore, S.F., Cakici, J.A., Clark, M.M., Gaughran, M., Feddock, M., Batalov, S., Bainbridge, M.N., Carroll, J., Caylor, S.A., Clarke, C., Ding, Y., Ellsworth, K., Farnaes, L., Hildreth, A., Hobbs, C., James, K., Kint, C.I., Lenberg, J., Nahas, S., Prince, L., Reyes, I., Salz, L., Sanford, E., Schols, P., Sweeney, N., Tokita, M., Veeraraghavan, N., Watkins, K., Wigby, K., Wong, T., Chowdhury, S. Wright, M.S., Dimmock, D.; RCIGM Investigators. (2019). A Randomized, Controlled Trial of the Analytic and Diagnostic Performance of Singleton and Trio, Rapid Genome and Exome Sequencing in Ill Infants. *American Journal of Human Genetics*, *105*(4):719-733. doi.org/10.1016/j.ajhg.2019.08.009

Kohlmann, W., Slavotinek, A. (2022). Genetic testing. UpToDate. https://www.uptodate.com/

Lapin, V., Mighion, L. C., da Silva, C. P., Cuperus, Y., Bean, L. J., & Hegde, M. R. (2016). Regulating whole exome sequencing as a diagnostic test. *Human Genetics*, *135*(6), 655-673. <u>doi.org/10.1007/s00439-016-1677-3</u>

Malinowski, J., Miller, D.T., Demmer, L. et al. (2020). Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. *Genetics in Medicine* 22, 986–1004. doi.org/10.1038/s41436-020-0771-z

Manickam, K., McClain, M. R., Demmer, L. A., Biswas, S., Kearney, H. M., Malinowski, J., Massingham, L. J., Miller, D., Yu, T. W., Hisama, F. M., & ACMG Board of Directors (2021). Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). *Genetics in Medicine: Official Journal of the American College of Medical Genetics*, 23(11), 2029–2037. doi.org/10.1038/s41436-021-01242-6

Marshall, C. R., Chowdhury, S., Taft, R. J., Lebo, M. S., Buchan, J. G., Harrison, S. M., Rowsey, R., Klee, E. W., Liu, P., Worthey, E. A., Jobanputra, V., Dimmock, D., Kearney, H. M., Bick, D., Kulkarni, S., Taylor, S. L., Belmont, J. W., Stavropoulos, D. J., Lennon, N. J., & Medical Genome Initiative (2020). Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. *NPJ Genomic Medicine*, 5, 47. doi.org/10.1038/ s41525-020-00154-9

Maryland Department of Health (2020). Newborn Metabolic Screening. https://health.maryland.gov/

McCarthy, J. (2019). Precision Medicine Advisors. *How to determine the clinical validity of genetic tests*. <u>https://www.precisionmedicineadvisors.com/</u>

McDermott, U. (2015). Next-generation sequencing and empowering personalised cancer medicine. *Drug Discovery Today*, 20(12), 1470-1475. doi.org/10.1016/j.drudis.2015.10.008

National Cancer Institute (NCI) (n.d.). NCI Dictionaries: Immunohistochemistry. https://www.cancer.gov/

National Cancer Institute (NCI). (2022). The Genetics of Cancer. https://www.cancer.gov/

	Johns Hopkins Health Plans Medical Policy Manual Medical Policy	Policy Number Effective Date	CMS07.03 04/01/2024 01/16/2024
	<u>Subject</u> Genetic Testina	Approval Date Supersedes Date Page	01/16/2024 11/01/2023 26 of 28

Vancian 11.0

National Cancer Institute (NCI). (2024). PDQ Cancer Information for Health Professionals. https://www.cancer.gov

National Comprehensive Cancer Network (2023). Genetic/Familial High-Risk Assessment: Colorectal. https://www.nccn.org/

National Institutes of Health (NIH), National Human Genome Research Institute (NHGRI) (2022). *Clinical Genome Resource (ClinGen)*. <u>https://www.genome.gov/</u>

National Institutes of Health (NIH,) National Human Genome Research Institute (NHGRI) (2023). *Healthcare Provider Genomics Educational Resources*. <u>https://www.genome.gov/</u>

National Research Council (US) Committee on Mapping and Sequencing the Human Genome (1988). <u>https://www.ncbi.nlm.nih.gov/</u>

National Society of Genetic Counselors (NSGC) (2023). *Position Statement: Use of Multi-Gene Panel Tests*. <u>https://www.nsgc.org/</u>

National Society of Genetic Counselors (NSGC) (2018). *Position Statement: Genetic Testing of Minors for Adult-Onset Conditions*. <u>https://www.nsgc.org/</u>

Nigrovic, P. A. (2023). The autoinflammatory diseases: An overview. UpToDate. https://www.uptodate.com/

O'Ferrall, E. (2022). Mitochondrial myopathies: Clinical features and diagnosis. UpToDate. https://www.uptodate.com/

Ontario Health (Quality) (2020). Genome-Wide Sequencing for Unexplained Developmental Disabilities or Multiple Congenital Anomalies: A Health Technology Assessment. Ontario *Health Technology Assessment Series*, 20(11), 1–178. https://www.ncbi.nlm.nih.gov/

Practice Committee of the American Society for Reproductive Medicine in collaboration with the Society for Male Reproduction and Urology (2018). Evaluation of the azoospermic male: a committee opinion. *Fertility and Sterility*, *109*(5), 777-782. doi.org/10.1016/j.fertnstert.2018.01.043

Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology (2018). The use of preimplantation genetic testing for an euploidy (PGT-A): a committee opinion. *Fertility and Sterility*, *109*(3), 429–436. doi.org/10.1016/j.fertnstert.2018.01.002

Raby, B.A., Blank, R.D. (2023). Genetics: Glossary of terms. UpToDate. https://www.uptodate.com/

Rink, B.D. (2023). Preconception and prenatal expanded carrier screening. UpToDate. https://www.uptodate.com/

Roman, A.S. (2022). Preconception and prenatal carrier screening for genetic disease more common in the Ashkenazi Jewish population and others with a family history of these disorders. *UpToDate*. <u>https://www.uptodate.com/</u>

Schattman, G.L., Xu, K. (2022). Preimplantation genetic testing. UpToDate. https://www.uptodate.com/

Schulz, W. L., Tormey, C. A., & Torres, R. (2015). Computational approach to annotating variants of unknown significance in clinical next generation sequencing. *Laboratory Medicine*, *46*(4), 285-289. <u>doi.org/10.1007/s00439-021-02331-x</u>

Shickh, S., Mighton, C., Uleryk, E., Pechlivanoglou, P., & Bombard, Y. (2021). The clinical utility of exome and genome sequencing across clinical indications: a systematic review. *Human Genetics*, *140*(10), 1403–1416. <u>doi.org/10.1007/</u><u>s00439-021-02331-x</u>

JOHNS HOPKINS HEALTH PLANS	Medical Policy	Policy Number Effective Date	CMS07.03 04/01/2024
		Approval Date Supersedes Date	01/16/2024
	Genetic Testing	Page	27 of 28

17 . 110

Snapper, S.B. & McGovern, D. P. (2023) Genetic factors in inflammatory bowel disease. *UpToDate*. <u>https://www.uptodate.com/</u>

Society for Maternal Fetal Medicine Publications Committee (SMFM) (2015). SMFM Statement: clarification of recommendations regarding cell-free DNA aneuploidy screening. *American Journal of Obstetrics & Gynecology*, 213(6), 753-4. doi.org/10.1016/j.ajog.2015.09.077

The ObG Project (2022). The Genome. https://www.obgproject/

UnitedHealthcare. (2023, October 11). *Cell-Free Fetal DNA Testing*. Medical Policy 2023T0560CC. <u>https://www.uhcprovider.com/</u>

U.S. Food and Drug Administration (FDA). (2019). Direct-to-Consumer Tests. https://www.fda.gov

Uhlig, H. H., Charbit-Henrion, F., Kotlarz, D., Shouval, D. S., Schwerd, T., Strisciuglio, C., de Ridder, L., van Limbergen, J., Macchi, M., Snapper, S. B., Ruemmele, F. M., Wilson, D. C., Travis, S., Griffiths, A. M., Turner, D., Klein, C., Muise, A. M., Russell, R. K., & Paediatric IBD Porto group of ESPGHAN (2021). Clinical Genomics for the Diagnosis of Monogenic Forms of Inflammatory Bowel Disease: A Position Paper from the Paediatric IBD Porto Group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition. *Journal of Pediatric Gastroenterology and Nutrition*, 72(3), 456–473. doi.org/10.1097/MPG.000000000000017

Vanderver A, Bernard G, Helman G, Sherbini O, Boeck R, Cohn J, Collins A, Demarest S, Dobbins K, Emrick L, Fraser JL, Masser-Frye D, Hayward J, Karmarkar S, Keller S, Mirrop S, Mitchell W, Pathak S, Sherr E, van Haren K, Waters E, Wilson JL, Zhorne L, Schiffmann R, van der Knaap MS, Pizzino A, Dubbs H, Shults J, Simons C, & Taft RJ; LeukoSEQ Workgroup. (2020). Randomized Clinical Trial of First-Line Genome Sequencing in Pediatric White Matter Disorders. *Annals of Neurology*, 88(2):264-273. doi.org/10.1002/ana.25757

Waggoner, D., Wain, K.E., Dubuc, A.M., Conlin, L., Hickey, S.E., Lamb, A.N., Martin, C.L., Morton, A.M., Rasmussen, K., Schuette, J.L., Schwartz, S., & Miller, D.T., ACMG Professional Practice and Guidelines Committee. (2018).Yield of additional genetic testing after chromosomal microarray for diagnosis of neurodevelopmental disability and congenital anomalies: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). *Genetics in Medicine*, *20*(10), 1105-1113. <u>doi.org/10.1038/s41436-018-0040-6</u>

Wai-Hou, L., Peng-Hui, W., et al. (2015). Noninvasive prenatal testing for fetal trisomy in a mixed risk-factor pregnancy population. *Journal of Obstetrics & Gynecology*, 54(2), 122-125. doi.org/10.1016/j.tjog.2015.02.001

Wand, H., Kalia, S.S., Helm, B.M., Suckiel, S.A., Brockman, D., Vriesen, N., Goudar, R.K., Austin, J., & Yanes, T. (2023). Clinical genetic counseling and translation considerations for polygenic scores in personalized risk assessments: A Practice Resource from the National Society of Genetic Counselors. *Journal of Genetic Counseling*, *32*(3), 558-575. <u>doi.org/10.1002/jgc4.1668</u>

Zhang, S., Taylor, A. K., Huang, X., Luo, B., Spector, E. B., Fang, P., Richards, C. S., & ACMG Laboratory Quality Assurance Committee (2018). Venous thromboembolism laboratory testing (factor V Leiden and factor II c.*97G>A), 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). *Genetics in Medicine: Official Journal of the American College of Medical Genetics*, 20(12), 1489–1498. doi.org/10.1038/s41436-018-0322-z

JOHNS HOPKINS HEALTH PLANS	Medical Policy Manual Medical Policy	Policy Number	CMS07.03
		Effective Date	04/01/2024
		Approval Date	01/16/2024
	<u>Subject</u> Genetic Testing	Supersedes Date	11/01/2023
		Page	28 of 28

Vanian 11.0

XI. <u>APPROVALS</u>

Historical Effective Dates: 08/26/2003, 03/15/2004, 10/22/2004, 10/21/2005, 10/19/2006, 01/07/2008, 01/05/2009, 01/07/2011, 06/07/2013, 06/05/2015, 09/02/2016, 12/02/2016, 09/01/2017, 10/01/2019, 05/03/2021, 08/01/2022, 11/01/2023, 04/01/2024